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Propagation in the Off Center E-Plane
Dielectrically Loaded Waveguide

NIKOLAI EBERHARDT

Abstract—Rectanuglar waveguides containing a full height lossless
dielectric slab in arbitrary positions are theoretically treated. Numerical
data about the cutoff frequencies of the three lowest TE-modes in the
case of loading with alumina are presented. A graphical method is devel-
oped to determine cutoff frequencies for other dielectric constants as well.
Graphs are given to determine the propagation constant and its frequency
dependence. Figures of some characteristic mode patterns are added. A
possible application to dissipative filters and frequency separators is dis-
cussed.

ECTANGULAR waveguides loaded with a full height
R dielectric slab as shown in Fig. 1 are used in devices
such as dielectric phase shifters, electronically vari-
able ferrite phase shifters, isolators, and filters. The special
case of the slab located in center of the guide has been
thoroughly treated by Vartanian, Ayres, and Helgesson [1].
Other approaches are known, [3]-[5], [8] but are restricted
to small values of e or special slab positions. In some of the
mentioned devices, configurations have to be used where the
slab is located off center. This case has not been solved so
far. There is no analytic solution. Having the four param-
eters: slab thickness, position, dielectric constant, and fre-
quency, the problem resists even numerical presentation on
a limited number of pages. Nevertheless there is urgent need
to have more theoretical background for certain design pro-
cedures. Moreover a better knowledge of the mode patterns
and their behavior is of great value to the designer of wave-
guide devices.

An interesting result of this investigation is that in the
case of a thin dielectric slab of high permittivity there exists
a sharp critical frequency above which almost all power
propagates inside of the dielectric material. Below this
frequency, however, the field is approximately identical with
that of the empty guide. The critical frequency approximately
coincides with the cutoff frequency of a dielectric mode in-
side of the slab. This effect has been used by the author to
construct dissipative high-pass filters, band absorption
filters, and harmonic filters [9].

GENERAL THEORY

The basic approach is straightforward and appears well
referred [7]. In order to obtain normalized results the fol-
lowing parameters are introduced. The dimensions a, c, d
may be taken from Fig. 1:

e=relative dielectric constant of the slab.
¢/a=normalized slab thickness.
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Fig. 1. Cross section of a dielectrically loaded waveguide.

ka=w/uoeo a=normalized frequency.
e=(a—c)/2d=position parameter.

If the slab is located in the center of the guide e becomes 1;
it decreases if the slab is moved toward the right wall; and
e=13 if the right wall is touched.

The unbounded space propagation constant is vy, = jeo/ ok
It is seen that the following electric field is sufficient to match
all boundary conditions ‘

In region I: E, = sing,y. (1a)
In region II: E, = CcosB/y + Dsing,y. (1b)
In region III: E, = B sin 8,(a — v). (Le)

Higher “TE.,-modes” are described by this approach as
well, if 8, and 8,” are chosen so that E, passes through zero
several times between y=0 and y=a. We will call a mode
the distorted TE;,-mode if the E,field is zero only at y=0
and y=a. Similarly a distorted TE,-mode is present if there
are n—1 zero points inside that interval, It is found to be
advantageous to normalize the transverse propagation con-
stants

I
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p and g now determine 8, and 8,/. Where possible the same
terminology is used as by Vartanian, Ayres, and Helgesson
[1], so that this theory in the special case of e=1 becomes
identical with the theory in reference [1].

Assuming u=1 everywhere; e=1 in regions I, III; ¢>1
in region II, and introducing (la) or (Ic) into Helmholtz’s
equation we find the characteristic equation

p 2
(‘g) = v* + wlepu,.

(2a)
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Equation (1b) yields similarly:

2¢ \?
<—> = v + wleeouo. (2b)

c

Magnetic and electric boundary conditions at the air

dielectric interfaces yield four equations. With equation (2)
they determine:

er
D= sinpsini—l—g—cospcos—q— (3)
er q er
er
C=sinpcosi—p—sin—cosp (4)
er q er

1 1
Cceosg——+ 24+ Dsing— + 2
er er

B = 5
sin p (2¢ — 1) ®)
e—1/c\?
¢ = (rot + = ~> (kay: (©)
4 a
er tanp (2e — 1 tan
tan2q=—-p—— Pl U P )
q per
— —tanptanp (2e — 1)
q
where
c
a
r = —
c
1 —
a

Equations (6) and (7) determine the normalized eigenvalues
p and ¢, which are the key to all previous field expressions.
It is impossible to find an explicit solution because of the
transcendental nature of (7). For a slab at the center (e=1),
(6) and (7) simplify to the set derived by Vartanian et al. [1].
Their higher-order solutions describe the fields of the dis-
torted TE, ,-modes. Some numerical results will be presented
later on.

CutoFF FREQUENCY

At the cutoff frequency v has to approach zero. Thus (2a)
and (2b) result in p,=q,/er\/e, where the subscript indicates
that p and ¢q are taken at cutoff frequency. Together with (7)
this yields another transcendental equation

1 tanp.(2¢e — 1) 4+ tan p.

tan 2er Ve po = — —=
e

. - (8)
— —tanp,tan p,(2e — 1)

€
If this equation could be solved in terms of p, the cutoff
frequency would be determined by (2a) as
a
(ka)e = pfc—[ or by

Ae 27 d
fe T2 (9)
a P a

the normalized cutoff wavelength.
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Obviously higher-order solutions of (8) determine the cut-
off wavelengths of the distorted TE,-modes with n> 1.

The author has set up an iteration process for the com-
puter to solve for as many higher cutoff wavelengths as
desirable. The complete graphical presentation of a function
of the three variables c/q, e, € is out of the format of this
article. In Figs. 2 through 4, the three largest cutoff wave-
lengths for e= 9.3 are plotted, this corresponds to the widely
used AlyO; (Alumina) as the dielectric material.

GRAPHICAL SOLUTION FOR CUTOFF FREQUENCY

A graphical solution of (8) can be based on the fact that
there is close relationship to the trigonometric identity as

tan o -} tan B

1 — tan o« tan B

tan (¢ + ) =

shown in Fig. 5. Along the tangent f to a unit circle two
distances / and [ are plotted. The distance 1/+/e is plotted
on the diameter. The angles « and 8 thus are related to those
distances by s=1/+/¢ tan 8 and /=1/+/e tan «. The angle
a8, according to the above identity, must have the follow-
ing relation to / and A

\/€l+\/2h_ 1 14+ h

1—dh e 1
€ Ve R

€

tan (o + B) =

We only need to construct
l=tanp, and h = tanp. 2 — 1),

as is easily done by plotting the arguments as angles into the

unit circle, and have

tan p, + tan p,(2e — 1)

1
tan (« + g8) = ?/‘i
— — tan p.tan p.(2e — 1)

€
= — tan (2er Ve po)
= tan (180° — 2er /€ po).

Thus, 2erv/e p.=A can be measured as the supplementary
angle between the lines n and m. The chart in Fig. 6 can be
used as a graphical aid for this construction. The procedure
is straightforward:

1) Select ¢, e, and a tentative value for p..

2) Plot the straight line  using the p-scale [1] which is
just a clockwise angle scale in radians and find the
intersection L with the tangent f.

3) Plot the straight line s using the net chart consisting of
the scales [2], [3] and find the intersection H. (With
the net chart the angle p.(2e—1) is constructed.)

4) Find the point E on the e-scale [4] and draw the straight
lines EH and EL. Using a compass, transfer the angle
A to measure it with scale [1].

Alteration

If the lines r or s intersect too far out with f, take the
tangent g instead of f and use the e-scale (5) instead of (4).
Otherwise proceed as before. This alteration is based on
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the fact that a similar trigonometric identity exists for the
cotangent function.
After A= 2epcr\/2 is determined, the necessary slab thickness
c/a and the related cutoff wavelength follow from

r

14+

with

c
a r 2¢/¢€ De
and (9).

A nomogram (Fig. 7) has been developed to solve the
problem purely graphically. Draw a straight line through e
and A on the proper scales and find intersection F with the
p. scale. Draw a straight line through p, and e on the proper
scales and find intersection G with line b. Draw a straight
line through p. and e on the proper scales and find intersec-
tion G with line b. Draw a straight line through F and G and
read ¢/a and \./a at the intersections of this line with the
scales.

The following example is shown: e=9.2, e=0.8, and p,
=1.08 yield 4=0.55 with the aid of the circular chart.
Going into the nomogram with these values results in
N/a=3.25 and ¢/a=0.1. The described method has the
disadvantage that p, has to be chosen initially. Thus, it is not
known which \./a or which ¢/a will result. However, some
complete set of correlated values e, e, ¢/a, A\,/a will be ob-
tained. By varying p, one soon ends up within the range of
particular interest.! Higher mode cutoff wavelengths can be
obtained by gradually increasing p, until the same ¢/a will
result.

Fortunately the construction works faster than it can be
described in words. The reader is invited to check a few of
the computed data in Figs. 2 through 4 before he tries to
solve for other dielectric constants.

PROPAGATION CONSTANT

Equations (2a) and (2b) are dispersion relations. They
differ from the analogous relationship for the empty (or
completely filled) waveguide by the fact that the left-hand
side is frequency dependent through p and ¢. From (2b) we

obtain
20\ 2
B2 = wleequg — <—q-> .
c

Equations (6) and (7) indicate that ¢ and consequently +
will depend on the four parameters: (ka), e, c/a, and e.
However, for graphical presentation it is possible to reduce
the number of parameters to three. ¢ and (ka) appear only
in (6) and here in the combination (e— 1)-(ka)?. Therefore we
define

(10)

1 The following approximation may be used to determine an initial
value of p. if A\./a is given and c¢/a is to be determined

1

Pe =
{7
e
a

This is implied in (9) if c<a.
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F =Fkav/e — 1 (11)

and consider g to be a function of F, e, and ¢/a. In Figs. 8
through 10, g and p have been plotted as a function of F
and e for three different slab thicknesses ¢/a. Therefore, p
and g can be obtained for every combination of ¢, ka, and
e. The propagation constant then follows directly from (10).

SoME CHARACTERISTIC FIELD PATTERNS AND
POSSIBLE APPLICATIONS

After p and g are known every field component can be
calculated from the equations in the first paragraph. Some
typical field configurations have been plotted in Figs. 11
through 14 to provide a better understanding of such waves.
It should be noted that p always becomes real at the cutoff
frequency. A real p means a sinusoidal y-dependence of the
fields in the air space. At higher frequencies however, and if
the dielectric loading is strong enough, p turns imaginary and
the fields in the air space decay fast according to hyperbolic
sin and cos functions. At the transition point, where p=0,
there is a linear increase.

All fields have been normalized to equal power flow. The
normalized field strength E, is dimensionless and is con-
nected with the true field strength E.’ by the equation

4 1/2
B = (i’ P> B,

" (12)

where 7 is the intrinsic impedance, a and b are the waveguide
dimensions, and P is the transmitted power. The normaliza-
tion procedure is described in Appendix I.

Of particular interest is the case of a thin slab with high
dielectric constant touching the wall, as shown in Fig. 14.
Between F=100 and F=110 there is a sudden increase of
the field strength within the slab. Simultaneously the field
in the left part of the space drops to virtually zero. The
critical value of F is about 105. The physical reason for this
remarkable change within ten percent bandwidth is to be
seen in the cutoff behavior of the dielectric waveguide which
is formed by the slab. It turns out that at F.;, the slab thick-
ness ¢ is just equal to A/4 of a TEM-wave traveling in y-
direction. Thus, Fei apparently describes the cutoff fre-
quency of a mode that is built up by multiple reflections of a
TEM-wave between the right surface of the dielectric ma-
terial (short-circuited end) and the left surface (approxi-
mately open end). An outline of the theory of such dielectric
modes is included in Appendix II. According to this mecha-
nism Fe.;; can be directly expressed in terms of ¢/a

™

(13)

F erit &~
[
2 —
a
If the dielectric material is lossy, frequencies above F.;, will

be attenuated much more strongly than those below, result-
ing in a simple dissipative low-pass filter.?

% Various filters of this type have been successfully operated by the
author.
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Another possible application would be frequency separa-
tion. Coupling apertures in the dielectric region will couple
only to the high frequency. Whether or not there will be
coupling to high frequencies in the center of the guide will
depend on the presence of higher modes. It is interesting to
note that, if the slab is removed from the wall, the critical
frequency of the TEs and TEj mode is approximately
given by

(144)

(14b)

These frequencies correspond to ¢=)/2 and ¢=\ of a trans-
verse TEM-wave and are the cutoff frequencies of higher

5 6 7 8 9 —— 10

Cutoff wavelength of the TEi,-mode, ¢=9.3.
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Fig. 3. Cutoff wavelength of the TEy-mode, ¢=9.3.
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dielectric modes. This suggests the conclusion that above
Foie the propagation occurs mainly in a dielectric mode
which is composed by multiple reflections of transverse
TEM-waves at the diclectric surfaces. Near F.,;, the surfaces
act as open circuits,

The relatively fast transition from hyperbolic to sinusoidal
fields near Foy is apparently enforced by the resonance be-
havior of the dielectric slab at the dielectric cutoff.

But Fait,20 is the lowest possible dielectric resonance be-
tween two air to dielectric interfaces. Therefore, no fast
transition can occur in the case of the TE;;-mode with the
slab removed from the wall. Nevertheless the electric field
strength at the interfaces will gradually decrease with in-
creasing frequency, because, according to Appendix II, the
boundary acts as a short circuit at high frequencies.?

3 The transition may be still sharp enough for the construction of
harmonic frequency separators as in U. S. Patent 2 963 661 by H.
Seidel.
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Fig. 4. Cutoff wavelength of the TEs-mode, ¢=9.3.
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Fig. 5. Graphical representation of (8).
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Fig. 6. Chart of (8).
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Fig. 7. Nomogram for ¢/a and A./a.
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Fig. 9. pandg as a function of F and e; c¢/a=0.05.

+4

5J

104

1 20 0
o] ® 3

Fig. 10. p and q as a function of F and e; ¢/a=0.025.

0.8

0.4



288 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MAY 1967

TE;,

E,

2 i

65
- 60
45
F=\30
4
p Y
e
Y
Fig. 11. Distorted TE;-mode, ¢=9.3,
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Fig. 14, Distorted TE;p-mode, ¢/a=0.015; ¢=200.
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SUMMARY

Solutions of the rigorous field theoretical approach to
TE-modes in full height dielectrically loaded rectangular
waveguides have been obtained. Numerical data about the
three lowest cutoff points for e=9.3 were plotted. A graphical
method to determine the cutoff frequencies at other dielectric
constants was developed. Using the values of the basic
parameters p and ¢ from Figs. 8 through 10 all possible
information about the wave solution can be obtained for
three different slab thicknesses.

Some characteristic mode patterns are presented and a
physical explanation of their frequency dependence is given.
With this knowledge it was possible to suggest two new
applications of such waveguides.

APPENDIX 1

According to (1) all fields are determined except to a
common multiplier. This multiplier varies arbitrarily from
one solution to another. In order to be able to compare dif-
ferent field solutions in a common scale they have to be
normalized to the same total power flow P. The field strength
E, is proportional to +/P. Thus, a useful normalized field
strength would be E,=E,'/(g/P), where g is an arbitrary
constant.

Integration of Poynting’s vector over the cross section of
the waveguide yields

ab 2qa\*
P = e—(~—>(e——l)-A
Fe¢

4y
where
2 re d sin 2
S PR
aJo a 2p
sin 2p(2e—1
+B2<2e_1____p_<6_)_>]
2p

1 2q
(C*—D?) (sin 2q <——|—2> —sin —>
¢ er er
___I__ C?_I,_D2+ N

a 4q
1 2q
cos 2q| —+2 ) —cos—
er er
—CD
2q

For convenience g is selected to be

g_ab‘

Equation (12) is the immediate result.
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APPENDIX 11

The dielectric modes can be exactly described in terms
of two plane TEM-waves which are reflected back and forth
between the dielectric air interfaces and have the E-field
parallel to those surfaces. Compare for instance the similar
approach to ordinary rectangular waveguides in Montgom-
ery, Dicke, and Purcell [6]. At cutoff the angle of incidence
upon the interface 6, is zero (perpendicular incidence). With
increasing frequency, 6, increases quickly, passes the critical
angle of total reflection, and goes to 90° if the frequency
approaches infinity.

The critical angle is determined by the dielectric constant

) T
8N Oeris = —
€

For ¢=200 the critical angle practically appears at the cut-
off point.

The field strength at the interfaces is determined by the
reflection coefficient for those plane waves

N2 COS 0z —_ 771\/1—'— GSWE
72 €088, + n1v/1 — esin?6;

where 1, and 7, are the intrinsic impedances in the dielectric
slab and in air.

It can easily be seen that T'~ 1, for §,=0=0..;;. So indeed
the interface acts as an open circuit for TEM-waves. At
higher frequencies, respectively, larger 6., I" passes complex
values and ends up at I'=—1, if §—90°. Consequently at
high frequencies the interfaces act as short circuits.

Well above the critical frequency the reactive field outside
of the slab decays very quickly. One would expect that here
the solution becomes identical with the wave in a free slab
of infinite height or with the wave in a slab with an infinite
metal plane against one surface.
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