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Propagation in the Off Center E-Plane

Dielectrically Loaded Waveguide

NIKOLAI EBERHARDT

.4bstract-RectanugIar waveguides containing a full height lossless

dielectric slab in arbitrary positions are theoretically treated. Nnmerical

data about the cutoff frequencies of the three lowest TE-modes in the

case of loading with ahnnina are presented. A graphical method is devel-

oped to determine cutoff frequencies for other dielectric constants as well.

Graphs are given to determine the propagation constant and its frequency

dependence. Figures of some characteristic mode patterns are added. A

possible application to dissipative filters and frequency separators is dis-

cussed.

ECTANGULAR waveguides loaded with a full height

R
dielectric slab as shown in Fig. 1 are used in devices

such as dielectric phase shifters, electronically vari-

able ferrite phase shifters, isolators, and filters. The special

case of the slab located in center of the guide has been

thoroughly treated by Vartanian, Ayres, and Helgesson [1].

Other approaches are known, [3]–[5], [8] but are restricted

to small values of c or special slab positions. In some of the

mentioned devices, configurations have to be used where the

slab is located off center. This case has not been solved so

far. There is no analytic solution. Having the four param-

eters: slab thickness, position, dielectric constant, and fre-

quency, the problem resists even numerical presentation on

a limited number of pages. Nevertheless there is urgent need

to have more theoretical background for certain design pro-

cedures. Moreover a better knowledge of the mode patterns

and their behavior is of great value to the designer of wave-

guide devices.

An interesting result of this investigation is that in the

case of a thin dielectric slab of high permittivity there exists

a sharp critical frequency above which almost all power

propagates inside of the dielectric material. Below this

frequency, however, the field is approximately identical with

that of the empty guide. The critical frequency approximately

coincides with the cutoff frequency of a dielectric mode in-

side of the slab. This effect has been used by the author to

construct dissipative high-pass filters, band absorption

filters, and harmonic filters [9].

GENERAL THEORY

The basic approach is straightforward and appears well

referred [7]. In order to obtain normalized results the fol-

lowing parameters are introduced. The dimensions a, c, d

may be taken from Fig. 1:

~= relative dielectric constant of the slab.

c/a = normalized slab thickness.
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Fig. 1. Cross seetion of a dielectrically loaded waveguide.

ka = ~<POeO a= normalized frequency.

e = (a — c)/2d= position parameter.

If the slab is located in the center of the guide e becomes 1;

it decreases if the slab is moved toward the right wall; and

e= ~ if the right wall is touched.

The unbounded space propagation constant is 70 =jw<~O.

It is seen that the following electric field is sufficient to match

all boundary conditions

In region I: E. = sin &y. (la)

In region II: E. = C cos f?u’y + D sin @,’y. (lb)

In region III: Ez = B sin &(a – y). (lC)

Higher “TEfiO-modes” are described by this approach as

well, if & and @y’are chosen so that E. passes through zero

several times between y= O and y= a. We will call a mode

the distorted TEIO-mode if the E.-field is zero only at y= o

and y= a. Similarly a distorted TE.o-mode is present if there

are n — 1 zero points inside that interval. It is found to be

advantageous to normalize the transverse propagation con-

stants

pu=~

p and q now determine & and 13g’.Where possible the same
terminology is used as by Vartanian, Ayres, and Helgesson

[I], so that this theory in the special case of e= I becomes
identical with the theory in reference [1].

Assuming N= 1 everywhere; c= 1 in regions I, III; ~> 1

in region II, and introducing (1a) or (lc) into Helmholtz’s

equation we find the characteristic equation

(2a)
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Equation (lb) yields similarly:

(2b)

Magnetic and electric boundary conditions at the air

dielectric interfaces yield four equations. With equation (2)

they determine:

C=sinpcos ~–Ysin Zcosp
er !Z er

Ccosq~+2+Dsinq~+2
er er

B=—
sin p (2e – 1)

()C—1C2
g’ = (pre) 2 + — ; (ka)’

4

tan p (2e – 1) + tan p
tan 2q = – E —————–

Y per
—–tanptanp(2e–l)

(3)

(4)

(5)

(6)

(7)

q

where

c
—

a
r= —— .

a

Equations (6) and (7) determine the normalized eigenvalues

p and q, which are the key to all previous field expressions.

It is impossible to find an explicit solution because of the

transcendental nature of(7). For a slab at the center (e= 1),

(6) and (7) simplify to the set derived by Vartanian et al. [1].

Their higher-order solutions describe the fields of the dis-

torted TE.O-modes. Some numerical results will be presented

later on.

CUTOFF FREQUENCY

At the cutoff frequency 7 has to approach zero. Thus (2a)

and (2b) result in p. = qJer4;, where the subscript indicates

that p and q are taken at cutoff frequency. Together with (7)

this yields another transcendental equation

1 tan pc(2e – 1) + tan p,
tan 2er ~; p, = – —–

de 1
– . (8)

— — tan p,tan pC(2e – 1)
E

If this equation could be solved in terms of pc the cutoff

frequency would be determined by (2a) as

A. % d
=— .=, (9)

a p. a

the normalized cutoff wavelength.

Obviously higher-order solutions of(8) determine the cut-

off wavelengths of the distorted TEnO-modes with n> 1.

The author has set up an iteration process for the com-

puter to solve for as many higher cutoff wavelengths as

desirable. The complete graphical presentation of a function

of the three variables c/a, e, e is out of the format of this

article. In Figs. 2 through 4, the three largest cutoff wave-

lengths for c= 9.3 are plotted, this corresponds to the widely

used Alz03 (Alumina) as the dielectric material,

GRAPHICAL SOLUTION FOR CUTOFF FREQUENCY

A graphical solution of (8) can be based on the fact that

there is close relationship to the trigonometric identity as

tan a + tan p
tan (a + @) =

l–tanatanfl

shown in Fig. 5. Along the tangent y to a unit circle two

distances h and 1 are plotted. The distance l/<~ is plotted

on the diameter. The angles a and P thus are related to those

distances by h= 1/<; tan B and 1= 1/<; tan CY.The angle

a+B, according to the above identity, must have the follow-
ing relation to 1 and h

w&l + ~:h 1 l+h
tan(a+ p)= — ——

l–dh ‘<; 1 “
— – l.h
e

We only need to construct

Z = tan p, and h = tanpC(2e — 1),

as is easily done by plotting the arguments as angles into the

unit circle, and have

tan pc + tan pC(2e – 1)
tan (a+Ll) = Lo——— ——

de 1
— – tanpCtanp,(2e – 1)

e

—– – tan (2er <Zp.)

= tan (180° – 2er <~p.).

Thus, 2er& p, = A can be measured as the supplementary

angle between the lines n and m. The chart in Fig. 6 can be

used as a graphical aid for this construction. The procedure

is straightforward:

1) Select e, e, and a tentative value for p,.

2) Plot the straight line r using the p-scale [1] which is

just a clockwise angle scale in radians and find the

3)

4)

intersection L with the tangent~.

Plot the straight line s using the net chart consisting of

the scales [2], [3] and find the intersection H. (With

the net chart the angle pJ2e - 1) is constructed.)

Find the point Eon the e-scale [4] and draw the straight
lines EH and EL. Using a compass, transfer the angle

A to measure it with scale [1].

Alteration

If the lines r or s intersect too far out with f, take the

tangent g instead of f and use the e-scale (5) instead of (4).

Otherwise proceed as before. This alteration is based on
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the fact that a similar trigonometric identity exists for the

cotangent function.

After A= 2ep.r<Z is determined, the necessary slab thickness

c/a and the related cutoff wavelength follow from

c ‘r A
—=— with r.—.—
a l+r 2e4e pc

and (9).

A nomogram (Fig. 7) has been developed to solve the

problem purely graphically. Draw a straight line through c

and A on the proper scales and find intersection F with the

p. scale. Draw a straight line through p. and eon the proper

scales and find intersection G with line b. Draw a straight

line through p, and e on the proper scales and find intersec-

tion G with line b. Draw a straight line through F and G and

read c/a and AC/a at the intersections of this line with the

scales.

The following example is shown: c= 9.2, e= 0.8, and pc

= 1.08 yield A= 0.55 with the aid of the circular chart.

Going into the nomogram with these values results in

A./a= 3.25 and c/a= 0.1. The described method has the

disadvantage that pChas to be chosen initially. Thus, it is not

known which hC/a or which c/a will result. However, some

complete set of correlated values e, e, c/a, AJa will be ob-

tained. By varying p. one soon ends up within the range of

particular interest.1 Higher mode cutoff wavelengths can be

obtained by gradually increasing p. until the same c/a will

result.

Fortunately the construction works faster than it can be

described in words. The reader is invited to check a few of

the computed data in Figs. 2 through 4 before he tries to

solve for other dielectric constants.

PROPAGATION CONSTANT

Equations (2a) and (2b) are dispersion relations. They

differ from the analogous relationship for the empty (or

completely filled) waveguide by the fact that the left-hand

side is frequency dependent through p and q. From (2b) we

obtain

Zq 2

()/32 = cd’e,opo – — .
c

(lo)

Equations (6) and (7) indicate that q and consequently ~
will depend on the four parameters: (ka), e, c/a, and C.

However, for graphical presentation it is possible to reduce

the number of parameters to three. e and (ka) appear only

in (6) and here in the combination (e— 1). (ka)2. Therefore we

define

1The following approximation may be used to determine an initial
value of p. if &/a is given and c/a is to be determined

1
Pc=y”

<.e

a

———
F=i%a~e-1 (11)

and consider q to be a function of F, e, and c/a. In Figs. 8

through 10, q and p have been plotted as a function of F

and e for three different slab thicknesses c/a. Therefore, p

and q can be obtained for every combination of e, ka, and

e. The propagation constant then follows directly from (10).

SOME CHARACTERISTIC FIELD PATTERNSAND

POSSIBLEAPPLICATIONS

After p and q are known every field component can be

calculated from the equations in the first paragraph. Some

typical field configurations have been plotted in Figs. 11

through 14 to provide a better understanding of such waves.

It should be noted that p always becomes real at the cutoff

frequency. A real p means a sinusoidal y-dependence of the

fields in the air space. At higher frequencies however, and if

the dielectric loading is strong enough, p turns imaginary and

the fields in the air space decay fast according to hyperbolic

sin and cos functions. At the transition point, where p = O,

there is a linear increase.

All fields have been normalized to equal power flow. The

normalized field strength E. is dimensionless and is con-

nected with the true field strength Ezt by the equation

(12)

where v is the intrinsic impedance, a and b are the waveguide

dimensions, and P is the transmitted power. The normaliza-

tion procedure is described in Appendix I.

Of particular interest is the case of a thin slab with high

dielectric constant touching the wall, as shown in Fig. 14.

Between F= 100 and F= 110 there is a sudden increase of

the field strength within the slab. Simultaneously the field

in the left part of the space drops to virtually zero. The

critical value of F is about 105. The physical reason for this

remarkable change within ten percent bandwidth is to be

seen in the cutoff behavior of the dielectric waveguide which

is formed by the slab. It turns out that at FCrifi the slab thick-

ness c is just equal to x/4 of a TEM-wave traveling in y-

direction. Thus, FCrit apparently describes the cutoff fre-

quency of a mode that is built up by multiple reflections of a

TEM-wave between the right surface of the dielectric ma-

terial (short-circuited end) and the left surface (approxi-

mately open end). An outline of the theory of such dielectric

modes is included in Appendix II. According to this mecha-

nism FCrit can be directly expressed in terms of c/a

(13)

2—
a

If the dielectric material is Iossy, frequencies above Ferit will

be attenuated much more strongly than those below, result-

ing in a simple dissipative low-pass filter.z

z Various filters of this type have been successfully operated by the
author.This is implied in (9) if c<<a.
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Another possible application would be frequency separa-

tion. Coupling apertures in the dielectric region will couple

only to the high frequency. Whether or not there will be
.,

coupling to high frequencies in the center of the guide will

depend on the presence of higher modes. It is interesting to

note that, if the slab is removed from the wall, the critical

frequency of the TEZO and TE,o mode is approximately

given by

c
—
a

21r
Fcrit,30 = — “ (14b)

c
—
a

These frequencies correspond to c= A/2 and c = h of a trans-

verse TEM-wave and are the cutoff frequencies of higher

x,
T
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Fig. 2. Cutoff wavelength of the TE1O-mode, e= 9.3.
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Fig. 3. Cutoff wavelength of the TE20-mode, e= 9.3.

dielectric modes. This suggests the conclusion that above

FCrit the propagation occurs mainly in a dielectric mode

which is composed by multiple reflections of transverse

TEM-waves at the dielectric surfaces. Near FC~it the surfaces

act as open circuits.

The relatively fast transition from hyperbolic to sinusoidal

fields near Foriti is apparently enforced by the resonance be-

havior of the dielectric slab at the dielectric cutoff.

But Fcritjzo is the lowest possible dielectric resonance be-

tween two air to dielectric interfaces. Therefore, no fast

transition can occur in the case of the TEl,-mode with the

slab removed from the wall. Nevertheless the electric field

strength at the interfaces will gradually decrease with in-

creasing frequency, because, according to Appendix II, the

boundary acts as a short circuit at high frequencies.8

BThe transition may be still sharp enough for the construction of
harmonic freauency separators as in U. S. Patent 2963661 bv H.
Seidel. “ - A
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Fig. 4. Cutoff wavelength of the TEs,-mode, e= 9.3.
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Fig. 5. Graphical representation of (8).
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Fig. 6. Chart of (8).
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Fig. 11. Distorted TEIO-mode, e= 9.3.
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Fig. 12. Distorted TE*O-mode, e= 9.3.
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Fig. 13. Distorted TEsO-mode, ● = 9.3.

Fig. 14. Distorted TEl,-mode, c/a= 0.015; e= 200.
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SUMMARY

Solutions of the rigorous field theoretical approach to

TE-modes in full height dielectrically loaded rectangular

waveguides have been obtained. Numerical data about the

three lowest cutoff points for e= 9.3 were plotted. A graphical

method to determine the cutoff frequencies at other dielectric

constants was developed. Using the values of the basic

parameters p and q from Figs. 8 through 10 all possible
,

information about the wave solution can be obtained for

three different slab thicknesses.

Some characteristic mode patterns are presented and a

physical explanation of their frequency dependence is given.

With this knowledge it was possible to suggest two new

applications of such waveguides.

APPENDIX I

According to (1) all fields are determined except to a

common multiplier. This multiplier varies arbitrarily from

one solution to another. In order to be able to compare dif-

ferent field solutions in a common scale they have to be

normalized to the same total power flow P. The field strength

El is proportional to <~. Thus, a useful normalized field

strength would be Ez = Et’/(g@, where g is an arbitrary

constant.

Integration of Poynting’s vector over the cross section of

the waveguide yields

where

(+~z 2e_l _
sin 2p(2e – 1)

2p )1

[

( (++2)-si”3(C2 – D’) sin 2q

+~ C2+D2+ —
a

.os2q(:+2)-co:: ]
2q

er
– CD ——

2q

For convenience g is selected to be

4q
q=z.

Equation (12) is the immediate result.

APPENDIX II

The dielectric modes can be exactly described in terms

of two plane TEM-waves which are reflected back and forth

between the dielectric air interfaces and have the E-field

parallel to those surfaces. Compare for instance the similar

approach to ordinary rectangular waveguides in Montgom-

ery, Dicke, and Purcell [6]. At cutoff the angle of incidence

upon the interface 8, is zero (perpendicular incidence). With

increasing frequency, (3;increases quickly, passes the critical

angle of total reflection, and goes to 90° if the frequency

approaches infinity.

The critical angle is determined by the dielectric constant

d

T
sin dc~it = — o

e

For e= 200 the critical angle practically appears at the cut-

off point.

The field strength at the interfaces is determined by the

reflection coefficient for those plane waves

~2 cos e% – 711<G t si%2_Z
r=——

772 eos O, + qlv’1 — esin29<

where ~1 and TZ are the intrinsic impedances in the dielectric

slab and in air.

It can easily be seen that r= 1, for 0,=0= Ocrit,.So indeed

the interface acts as an open circuit for TEM-waves. At

higher frequencies, respectively, larger 19,,r passes complex

values and ends up at I’= — 1, if 0,~90°. Consequently at

high frequencies the interfaces act as short circuits.

Well above the critical frequency the reactive field outside

of the slab decays very quickly. One would expect that here

the solution becomes identical with the wave in a free slab

of infinite height or with the wave in a slab with an infinite

metal plane against one surface.
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